LeetCode 127 单词接龙

字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> … -> sk:

每一对相邻的单词只差一个字母。
对于 1 <= i <= k 时,每个 si 都在 wordList 中。注意, beginWord 不需要在 wordList 中。
sk == endWord
给你两个单词 beginWord 和 endWord 和一个字典 wordList ,返回 从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0 。

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:5
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:0
解释:endWord "cog" 不在字典中,所以无法进行转换。

提示:

  • 1 <= beginWord.length <= 10
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 5000
  • wordList[i].length == beginWord.length
  • beginWord、endWord 和 wordList[i] 由小写英文字母组成
  • beginWord != endWord
  • wordList 中的所有字符串 互不相同

解题:

// 对昨天的结果取长度就好
func backtrack(from map[string][]string, path []string, beginWord, cur string, res [][]string) [][]string {
	if cur == beginWord {
		res = append(res, path)
		return res
	}
	for _, v := range from[cur] {
		path = append([]string{v}, path...)
		res = backtrack(from, path, beginWord, v, res)
		path = path[1:]
	}
	return res
}

func ladderLength(beginWord string, endWord string, wordList []string) int {
	var res [][]string
	// 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
	data := make(map[string]string)
	for i := range wordList {
		data[wordList[i]] = wordList[i]
	}
	// 特殊用例判断
	if _, ok := data[endWord]; !ok {
		return 0
	}

	delete(data, beginWord)

	// 第 1 步:广度优先搜索建图
	// 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先搜索的第几层
	steps := make(map[string]int)
	steps[beginWord] = 0
	// 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
	from := make(map[string][]string)
	step, found, wordLen := 1, false, len(beginWord)
	queue := []string{beginWord}
	for len(queue) > 0 {
		size := len(queue)
		for i := 0; i < size; i++ {
			currWord := queue[0]
			queue = queue[1:]
			nextWord := currWord
			// 将每一位替换成 26 个小写英文字母
			for j := 0; j < wordLen; j++ {
				origin := nextWord
				for c := 'a'; c <= 'z'; c++ {
					nextWord = nextWord[:j] + string(c) + nextWord[j+1:]
					if steps[nextWord] == step {
						from[nextWord] = append(from[nextWord], currWord)
					}
					if _, ok := data[nextWord]; !ok {
						continue
					}
					// 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
					delete(data, nextWord)
					// 这一层扩展出的单词进入队列
					queue = append(queue, nextWord)

					// 记录 nextWord 从 currWord 而来
					from[nextWord] = append(from[nextWord], currWord)
					// 记录 nextWord 的 step
					steps[nextWord] = step
					if nextWord == endWord {
						found = true
					}
				}
				nextWord = origin
			}
		}
		step++
		if found {
			break
		}
	}

	// 第 2 步:回溯找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
	if found {
		path := []string{endWord}
		res = backtrack(from, path, beginWord, endWord, res)
	}
	if len(res) == 0 {
		return 0
	}
	return len(res[0])
}

官方解答:

1.广度优先搜索 + 优化建图

func ladderLength(beginWord string, endWord string, wordList []string) int {
	wordId := map[string]int{}
	var graph [][]int
	addWord := func(word string) int {
		id, has := wordId[word]
		if !has {
			id = len(wordId)
			wordId[word] = id
			graph = append(graph, []int{})
		}
		return id
	}
	addEdge := func(word string) int {
		id1 := addWord(word)
		s := []byte(word)
		for i, b := range s {
			s[i] = '*'
			id2 := addWord(string(s))
			graph[id1] = append(graph[id1], id2)
			graph[id2] = append(graph[id2], id1)
			s[i] = b
		}
		return id1
	}

	for _, word := range wordList {
		addEdge(word)
	}
	beginId := addEdge(beginWord)
	endId, has := wordId[endWord]
	if !has {
		return 0
	}

	const inf int = math.MaxInt64
	dist := make([]int, len(wordId))
	for i := range dist {
		dist[i] = inf
	}
	dist[beginId] = 0
	queue := []int{beginId}
	for len(queue) > 0 {
		v := queue[0]
		queue = queue[1:]
		if v == endId {
			return dist[endId]/2 + 1
		}
		for _, w := range graph[v] {
			if dist[w] == inf {
				dist[w] = dist[v] + 1
				queue = append(queue, w)
			}
		}
	}
	return 0
}

2.双向广度优先搜索

func ladderLength(beginWord string, endWord string, wordList []string) int {
	wordId := map[string]int{}
	graph := [][]int{}
	addWord := func(word string) int {
		id, has := wordId[word]
		if !has {
			id = len(wordId)
			wordId[word] = id
			graph = append(graph, []int{})
		}
		return id
	}
	addEdge := func(word string) int {
		id1 := addWord(word)
		s := []byte(word)
		for i, b := range s {
			s[i] = '*'
			id2 := addWord(string(s))
			graph[id1] = append(graph[id1], id2)
			graph[id2] = append(graph[id2], id1)
			s[i] = b
		}
		return id1
	}

	for _, word := range wordList {
		addEdge(word)
	}
	beginId := addEdge(beginWord)
	endId, has := wordId[endWord]
	if !has {
		return 0
	}

	const inf int = math.MaxInt64
	distBegin := make([]int, len(wordId))
	for i := range distBegin {
		distBegin[i] = inf
	}
	distBegin[beginId] = 0
	queueBegin := []int{beginId}

	distEnd := make([]int, len(wordId))
	for i := range distEnd {
		distEnd[i] = inf
	}
	distEnd[endId] = 0
	queueEnd := []int{endId}

	for len(queueBegin) > 0 && len(queueEnd) > 0 {
		q := queueBegin
		queueBegin = nil
		for _, v := range q {
			if distEnd[v] < inf {
				return (distBegin[v]+distEnd[v])/2 + 1
			}
			for _, w := range graph[v] {
				if distBegin[w] == inf {
					distBegin[w] = distBegin[v] + 1
					queueBegin = append(queueBegin, w)
				}
			}
		}

		q = queueEnd
		queueEnd = nil
		for _, v := range q {
			if distBegin[v] < inf {
				return (distBegin[v]+distEnd[v])/2 + 1
			}
			for _, w := range graph[v] {
				if distEnd[w] == inf {
					distEnd[w] = distEnd[v] + 1
					queueEnd = append(queueEnd, w)
				}
			}
		}
	}
	return 0
}

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注