给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
示例 1:
输入:n = 3, k = 3
输出:"213"
示例 2:
输入:n = 4, k = 9
输出:"2314"
示例 3:
输入:n = 3, k = 1
输出:"123"
提示:
- 1 <= n <= 9
- 1 <= k <= n!
解题:
func getPermutation(n int, k int) string {
var r []string
used := make([]bool, n)
var tmp string
r = dfs(n, 0, tmp, used, r)
sort.Strings(r)
return r[k-1]
}
func dfs(n int, depth int, tmp string, used []bool, r []string) []string {
if depth == n {
return append(r, tmp)
}
for i := 0; i < n; i++ {
if used[i] {
continue
}
tmp += strconv.Itoa(i + 1)
used[i] = true
r = dfs(n, depth+1, tmp, used, r)
tmp = tmp[:len(tmp)-1]
used[i] = false
}
return r
}
超时了就很郁闷
官方解答:
1.数学+缩小问题规模
func getPermutation(n int, k int) string {
factorial := make([]int, n)
factorial[0] = 1
for i := 1; i < n; i++ {
factorial[i] = factorial[i-1] * i
}
k--
ans := ""
valid := make([]int, n+1)
for i := 0; i < len(valid); i++ {
valid[i] = 1
}
for i := 1; i <= n; i++ {
order := k/factorial[n-i] + 1
for j := 1; j <= n; j++ {
order -= valid[j]
if order == 0 {
ans += strconv.Itoa(j)
valid[j] = 0
break
}
}
k %= factorial[n-i]
}
return ans
}